EVIDENCES FOR A GLOBAL FLOOD GBAND CANYON

\#1: Layers made in rapid succession

We find an entire series of sedimentary layers-nearly a mile deep at Grand Canyon-that together folded without fracturing. This is possible only if a flood laid down all these layers in rapid succession and then the layers were folded quickly, while still soft and pliable, not over millions of years.

Example Grand Canyon's layers can be seen in a large step-like fon, called the East Kaibab Monccine. Some bids are. right angles (90°).

\#2: Sea animals far above sea level

How did sea creatures get inside rock layers thousands of feet above sea leve? These marine fossils, found on every continent, are a silent testimory to the ocean waters that once flooded over all the continents in a worldwide cataclysm, carrying sea creatures with them.

Fxample $\begin{aligned} & \text { Sporegs trilobites, and other sea animals are exposed in } \\ & \text { Grand Cancon's and }\end{aligned}$

\#3: Sand carried across the continent

Geologists have traced some of the sand and limestone at Grand Canyon to rocky sources maryy hundreds of miles away (as far away as the Appalachian Mountains). No river could strip away sand and carry it across an entire conti-nent-only a worldwide flood.

Examole $\left\lvert\, \begin{aligned} & \text { Sand grains in the Cocorino Sandstane have been Iraced } \\ & \text { to the mounfains farther noth in Ltah end wamine }\end{aligned}\right.$ Example $\left\lvert\, \begin{aligned} & \text { Sande moinfains farther north in Utah and Wyaming } \\ & \text { to }\end{aligned}\right.$

\#4: Layers over entire continents

Many of the rock layers at Grand Canyon can be traced over vast regors of North America and Into Europe and the Middle East. Only a worldwide flood could reasonably carry sediments from one end of a continent to the other.

Example
The Redwall Limestone is part of a continunus layer that crosses the Unitad States into Kentuchy and continues farther east irto England.

\#5: No slow and gradual erosion

Unlike today's land surface, which is constantly being eroded by water and wind, rock layers are amazingly flat and show little evidence of erosion. The only explanation is a worldwide catastrophe that stripped away vast surface areas and then deposited new layers so rapidly that they had little time for erosion.

FOSSIL PATTERNS SHOW THE ORDER OF FLOOD DEPOSITS

Because there is a clear order in the rock layers, we can look closely at the fossils contained in each of these layers to get clues about why the creatures were deposited in this particlular sequence. We find a definite sequence of fossils (Figure 4) that show evidence of waters rising and progressivle burying different eccological zones. We also see patterns of fossilized tracks in rock layers lower than we find the actual fossilized creature (Figures 5-6).

VERTEBRATE TRACKWAYS BELOW

 VERTEBRATE FOSSILS (FIGURE 6)Reptile footprints (right) are found much lower than the fossilized bodies of reptiles in the Grand Canyon. This strange pattern is easy to explain if the reptiles were scrambling to safety with each incoming deposit, until they died in exhaustion.

TRILOBITE TRACKS below trilobite FOSSILS (FIGURE 5)

Trilobite footprints (bottom right) are consistently found lower than the fossilized bodies of trilobites (upper right). This pattern makes sense if these shallow marine invertebrates were scrambling to safety with each incoming deposit of mud, until they died in exhaustion.

ORDER OF CREATURES BURIED IN THE GRAND STAIRCASE (FIGURE 4)

This table identifies the types of fossils found in each rock layer.
The fossils in bold text repre:sent the first apearence of that type of fossil.

BRAIN HEAD FORMATION
WASATCH FORMATION

KAIPAROWITS FORMATION

STRAIGHT CLIFFS FORMATION

TROPIC FORMATION

DAKOTA SANDSTONE
CARMEL FORMATION
NAVAJO SANDSTONE
KAYENTA FORMATION MOENAVE FORMATION CHINLE FORMATION

MOENKOPI FORMATION

KAIBAB LIMESTONE

TOROWEAP FORMATION

COCONINO SANDSTONE HERMIT SHALE

SUPAI GROUP

REDWALL LIMESTONE

TEMPLE BUTTE LIMESTONE
MAUV LIMESTONE

BRIGHT ANGEL SHALE
TAPEATS SANDSTONE
CHUAR GROUP
UNKAR GROUP
terrestrial and freshwater vertebrates, invertebrates, and plants
terrestrial and freshwater vertebrates, invertebrates, and plants
terrestrial and freshwater vertebrates, invertebrates, and plants
marine and freshwater invertebrates; freshwater, marine, and terrestrial vertebrates
marine plants, vertebrates, and invertebrates
terrestrial plants, vertebrates and invertebrates; marine invertebrates
marine invertebrates and vertebrates, and algae
terrestrial reptiles, plants, and invertebrate trace fossils; dinosaur tracks
terrestrial plants and vertebrates; dinosaur tracks freshwater fish, crocodiles, dinosaurs, and reptile tracks terrestrial plants and freshwater invertebrates
marine invertebrates; terrestrial and freshwater vertebrates, invertebrates and plants; trace fossils
brachiopods, bryozoans, sharks, nautiloids, fish, sponges, trilobites, crinoids, trace fossils, and microfossils
bivalves, gastropods (molluscs), cephalopods, brachiopods, bryozoans, crinoids, corals
vertebrate and invertebrate tracks, and trace fossils
trace fossils (trackways, burrows) and plants
trace fossils (vertebrate trackways, burrows), brachiopods, foraminifera, and plants
bivalves, cephalopods, brachiopods, corals, bryozoans, crinoids, trilobites, fish teeth, foraminifera, and algae
corals, fish scales, crinoids, stromatoporoids, brachiopods, gastropods, microfossils, and trace fossils
trilobites, brachiopods, sponges, gastropods, algal structures
brachiopods, molluscs, sponges, echinoderms, gastropods, trilobites, trace fossils (tracks, burrows)
trace fossils (tracks, burrows) and trilobites
stromatolites, algae, microfossils, and trace fossils none

