EVIDENCES FOR A GLOBAL FLOOD

GRAND CANYON

#1: Layers made in rapid succession

We find an entire series of sedimentary layers—nearly a mile deep at Grand Canyon—that together folded without fracturing. This is possible only if a flood laid down all these layers in rapid succession and then the layers were folded quickly, while still soft and pliable, not over millions of years.

Example

Grand Canyon's layers can be seen in a large step-like fold, called the East Kaibab Monocline. Some folds are right angles (90°).

#2: Sea animals far above sea level

How did sea creatures get inside rock layers thousands of feet above sea leve? These marine fossils, found on every continent, are a silent testimony to the ocean waters that once flooded over all the continents in a worldwide cataclysm, carrying sea creatures with them.

Example

Sponges, trilobites, and other sea animals are exposed in Grand Carryon's walls, over 8,000 feet above sea level.

#3: Sand carried across the continent

Geologists have traced some of the sand and limestone at Grand Canyon to rocky sources many hundreds of miles away (as far away as the Appalachian Mountains). No river could strip away sand and carry it across an entire continent—only a worldwide flood.

Example

Sand grains in the Cocorino Sandstone have been traced to the mountains farther north in Utah and Wyoming, around 600 miles (1000 km) away.

#4: Layers over entire continents

Many of the rock layers at Grand Canyon can be traced over vast regions of North America and Into Europe and the Middle East. Only a worldwide flood could reasonably carry sediments from one end of a continent to the other.

Example

The Redwall Limestone is part of a continuous layer that crosses the United States into Kentucky and continues farther east into England.

#5: No slow and gradual erosion

Unlike today's land surface, which is constantly being eroded by water and wind, rock layers are amazingly flat and show little evidence of erosion. The only explanation is a worldwide catastrophe that stripped away vast surface areas and then deposited new layers so rapidly that they had little time for erosion.

Example

The near-flat, knife-edge surface under the Tapeats Sandstone, known as the Great Unconformity, suggests massive erosion across the continent, followed quickly by a new layer.

© 2011 Answers in Genesis-USA. All rights reserved. For reprints, visit www. AnswersinGenesis.org

FOSSIL PATTERNS SHOW THE ORDER OF FLOOD DEPOSITS

Because there is a clear order in the rock layers, we can look closely at the fossils contained in each of these layers to get clues about why the creatures were deposited in this particlular sequence. We find a definite sequence of fossils (Figure 4) that show evidence of waters rising and progressivle burying different eccological zones. We also see patterns of fossilized tracks in rock layers lower than we find the actual fossilized creature (Figures 5-6).

VERTEBRATE TRACKWAYS BELOW **VERTEBRATE FOSSILS** (FIGURE 6)

Reptile footprints (right) are found much lower than the fossilized bodies of reptiles in the Grand Canyon. This strange pattern is easy to explain if the reptiles were scrambling to safety with each incoming deposit, until they died in exhaustion.

TRILOBITE TRACKS BELOW TRILOBITE FOSSILS (FIGURE 5)

Trilobite footprints (bottom right) are consistently found lower than the fossilized bodies of trilobites (upper right). This pattern makes sense if these shallow marine invertebrates were scrambling to safety with each incoming deposit of mud, until they died in exhaustion.

ORDER OF CREATURES BURIED IN THE GRAND STAIRCASE (FIGURE 4)

This table identifies the types of fossils found in each rock layer. The fossils in bold text represent the first apearence of that type of fossil.

BRAIN HEAD FORMATION	terrestrial and freshwater vertebrates, invertebrates, and plants
WASATCH FORMATION	terrestrial and freshwater vertebrates, invertebrates, and plants
KAIPAROWITS FORMATION	terrestrial and freshwater vertebrates, invertebrates, and plants
STRAIGHT CLIFFS FORMATION	marine and freshwater invertebrates; freshwater, marine, and terrestrial vertebrates
TROPIC FORMATION	marine plants, vertebrates, and invertebrates
DAKOTA SANDSTONE	terrestrial plants, vertebrates and invertebrates; marine invertebrates
CARMEL FORMATION	marine invertebrates and vertebrates, and algae
NAVAJO SANDSTONE	terrestrial reptiles, plants, and invertebrate trace fossils; dinosaur tracks
KAYENTA FORMATION	terrestrial plants and vertebrates; dinosaur tracks
MOENAVE FORMATION	freshwater fish, crocodiles, dinosaurs, and reptile tracks
CHINLE FORMATION	terrestrial plants and freshwater invertebrates
MOENKOPI FORMATION	marine invertebrates; terrestrial and freshwater vertebrates, invertebrates and plants; trace fossils
KAIBAB LIMESTONE	brachiopods, bryozoans, sharks , nautiloids, fish, sponges, trilobites, crinoids, trace fossils, and microfossils
TOROWEAP FORMATION	bivalves, gastropods (molluscs), cephalopods, brachiopods, bryozoans, crinoids, corals
COCONINO SANDSTONE	vertebrate and invertebrate tracks, and trace fossils
HERMIT SHALE	trace fossils (trackways, burrows) and plants
SUPAI GROUP	trace fossils (vertebrate trackways, burrows), brachiopods, foraminifera, and plants
REDWALL LIMESTONE	bivalves, cephalopods, brachiopods, corals, bryozoans, crinoids, trilobites, fish teeth, foraminifera, and algae
TEMPLE BUTTE LIMESTONE	corals, fish scales, crinoids, stromatoporoids, brachiopods, gastropods, microfossils, and trace fossils
MAUV LIMESTONE	trilobites, brachiopods, sponges, gastropods, algal structures
BRIGHT ANGEL SHALE	brachiopods, molluscs, sponges, echinoderms, gastropods, trilobites, trace fossils (tracks, burrows)
TAPEATS SANDSTONE	trace fossils (tracks, burrows) and trilobites
CHUAR GROUP	stromatolites, algae, microfossils, and trace fossils
UNKAR GROUP	none